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Abstract Developments in high-throughput genotyping

provide an opportunity to explore the application of marker

technology in distinctness, uniformity and stability (DUS)

testing of new varieties. We have used a large set of

molecular markers to assess the feasibility of a UPOV

Model 2 approach: ‘‘Calibration of threshold levels for

molecular characteristics against the minimum distance in

traditional characteristics’’. We have examined 431 winter

and spring barley varieties, with data from UK DUS trials

comprising 28 characteristics, together with genotype data

from 3072 SNP markers. Inter varietal distances were

calculated and we found higher correlations between

molecular and morphological distances than have been

previously reported. When varieties were grouped by kin-

ship, phenotypic and genotypic distances of these groups

correlated well. We estimated the minimum marker num-

bers required and showed there was a ceiling after which

the correlations do not improve. To investigate the possi-

bility of breaking through this ceiling, we attempted

genomic prediction of phenotypes from genotypes and

higher correlations were achieved. We tested distinctness

decisions made using either morphological or genotypic

distances and found poor correspondence between each

method.

Introduction

The development of new crop varieties offers potential

benefits, in terms of yield to growers and in quality

improvements to end users. A new variety represents a

considerable investment by plant breeders and this is sus-

tained by commercial returns underpinned by sui generis

protection of plant breeders’ intellectual property rights.

The International Union for the Protection of New Varie-

ties of Plants (UPOV) is an intergovernmental organisation

whose system of plant variety protection is intended to

encourage innovation in the field of plant breeding. Variety

registration and protection of crop varieties require dis-

tinctness, uniformity and stability (DUS) testing of new

varieties. DUS testing is currently carried out by assess-

ment of phenotypic characteristics where new varieties are

compared with existing varieties. Developments in high-

throughput genotyping have provided the opportunity to

apply molecular marker technology within variety regis-

tration. The International Union for the Protection of New

Varieties of Plants (UPOV) recognised the potential of

these methods when it established the Biochemical and

Molecular Techniques (BMT) Working Group. The BMT

guidelines suggest three application models for molecular

markers in variety registration (UPOV document INF/18/1

2011):

1. Molecular characteristics as a predictor of traditional

characteristics: Use of molecular characteristics which

are directly linked to traditional characteristics (gene

specific markers),
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2. Calibration of threshold levels for molecular charac-

teristics against the minimum distance in traditional

characteristics, and

3. development of a new system.

Success by the barley research community in cloning or

fine-mapping a number of genes underlying variation in

morphological traits has prompted the examination of how

diagnostic polymorphisms may be employed in a UPOV

BMT Model 1 approach to Distinctness in barley (Cockram

et al. 2012). Although this study demonstrates how certain

morphological traits may be assessed purely using molec-

ular markers, it concluded that fully diagnostic markers are

still too few to provide the necessary discrimination to

inform distinctness decisions. UPOV BMT Model 2

requires ‘‘Calibration of threshold levels for molecular

characteristics against the minimum distance in traditional

characteristics’’. This requirement should ensure that

decisions made under a molecular testing system would

reproduce those made using phenotypic characteristics.

Underlying UPOV BMT Model 2 is an expectation of a

strong correlation between inter variety distances calcu-

lated using molecular characteristics and traditional char-

acteristics. The UPOV BMT Model 2 has been investigated

in clonally propagated (grapevine), open pollinating (maize

and oilseed rape) and in predominantly self-pollinating

(durum wheat and barley) crops. The outcomes of these

investigations have been mixed. In grapevine (Ibáñez et al.

2009) it is possible to use microsatellites to calibrate a

minimum shared allele distance among varieties produced

by sexual reproduction in an accession set that included

closely related varieties. Essentially derived varieties

(EDVs) could not be differentiated in the same way.

Variety pairs that exceeded a minimum molecular thresh-

old could be declared distinct (D) but where differences in

inter variety molecular profiles did not significantly exceed

intra variety differences, further testing would be required

in what amounts to a ‘Super D’ approach (Button 2008). In

durum wheat (Noli et al. 2008) inter variety distances

calculated using molecular characteristics (SSR and AFLP)

and traditional characteristics were compared in a collec-

tion of 69 advanced lines from seven crosses. The corre-

lation between the molecular distances (99 SSRs and

AFLP) was good (r = 0.89) while the correlation between

morphology and molecular markers was moderate (SSRs,

r = 0.66; AFLP, r = 0.62) leading to the conclusion it was

possible to describe variety pairs as distinct where molec-

ular profiles differ greatly in a ‘Super D’ approach but field

testing could not be eliminated. In maize (Gunjaca et al.

2008) the correlation between phenotypic and molecular

distances, calculated using 28 SSR loci, was poor

(r = 0.21). A study in a large, international set of oilseed

rape varieties, genotyped using a suite of 29 SSR markers

to calculate molecular distances and using records from

DUS testing authorities to calculate phenotypic distances

(CPV5766 Final Report 2008). The outcome of this study was

far more disappointing, with the correlation between pheno-

typic and molecular marker-based distances falling between

0.03 and 0.08, depending on the methods used to calculate the

distances. Taken together, these results offer little prospect for

successfully implementing a UPOV BMT Model 2 approach.

Here we report the use of molecular markers to assess

the feasibility of a UPOV Model 2: ‘‘Calibration of

threshold levels for molecular characteristics against the

minimum distance in traditional characteristics’’.

Genotype data derived from whole genome association

scans in barley (Waugh et al. 2009) from the AGOUEB

project consisted of 3072 SNP markers from 490 UK barley

varieties and phenotype data from UK DUS trials comprising

33 characteristics, of which 28 were CPVO characteristics

from 579 winter and spring barley varieties. The final con-

solidated dataset, taking into account missing data points,

consisted of 431 varieties with both genotypic and phenotypic

data. The data were analysed to quantify correlations between

phenotypic and genotypic distances and compare phenotypic

and genotypic distances against a common standard derived

from known pedigree relationships within the dataset.

Materials and methods

The project used data 3072 SNP loci collected in the course

of the AGOUEB project (http://www.agoueb.org/) for a

collection of 490 barley varieties selected from UK regis-

tration trials over the past 20 years (Cockram et al. 2010).

These SNP markers were discovered using publicly avail-

able barley expressed sequence tags (ESTs) which were

converted to a series of Illumina Golden Gate SNP arrays

capable of generating 3072 assays, averaging more than

two markers/cM across the approximately 1,100-cM barley

genome (Close et al. 2009). This represents the most com-

prehensive resource of its kind currently available in barley

and the highest density of markers used in an investigation of

UPOV Model 2. Phenotypic data originating from the DUS

trials for the same period for 579 winter and spring barley

lines were collated for this project. The majority of descrip-

tions were derived from DUS field examinations at NIAB,

though a small number of descriptions were obtained by

bilateral purchase from DUS authorities in another country.

We considered only those characteristics included in CPVO-

TP/019/3 (2012). These datasets were united to produce a

final set of 431 varieties with both phenotypic and genotypic

data. The final data set was drawn from the molecular and

phenotypic datasets by rejecting varieties where there were

missing data for more than ten DUS test characteristics and

varieties with more than 20 % missing genotypic data.
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The data analysis was carried out using Microsoft Excel,

ASReml (Gilmour et al. 1995) and the R Statistical Pack-

age (2010). The analysis required the R packages ‘mice’:

Multivariate Imputation by Chained Equations (van Buu-

ren and Groothuis-Oudshoorn 2011) and ‘cluster’: Cluster

Analysis Extended (Struyf et al. 1997). These packages

were used to calculate the simple genetic distance metrics:

Manhattan and Euclidean Distances and simple phenotypic

distances: Manhattan and Modified Manhattan Distances

and Gower’s Coefficient (1971). The Manhattan Distance

was used to calculate phenotypic distances as it reflects the

decision-making process used in DUS examinations. The

Modified Manhattan Distance is a variation to the Man-

hattan Distance such that the value of the pair-wise com-

parison for a characteristic must meet or exceed a threshold

value, termed the ‘band width’, if it is to be added to the

inter variety distance. The value of the band width is set by

experts at a level that ensures calculated differences are not

an artefact of variation in the observation and recording

system within and between years. Gower’s coefficient was

selected for its suitability when handling data sets that

include binary, multistate and continuous data (Gower

1971). We predicted each phenotypic characteristic using

ridge regression implemented in the ‘R’ ‘penalized’ pack-

age (Goeman 2010) within the R statistical package using

linear regression. Linear regression was considered

appropriate for the quantitative traits. The values used for

the tuning parameter k were determined by tenfold cross-

validation. This empirically determined tuning parameter k
for each characteristic was used in the genomic prediction

of phenotype datasets that were, in turn, used to calculate

distance matrices.

There was a high proportion of missing phenotypic data

in the final set. The risk of erroneously calculating low

inter variety phenotypic distances, introduced by missing

data, was reduced by creating data sets where missing

values were replaced using the ‘R’ ‘mice’ package (van

Buuren and Groothuis-Oudshoorn 2011). Missing pheno-

type data were replaced by values drawn at random from

the existing data to generate 100 ‘complete’ data-setsPhe-

notypic distance matrices were calculated for each data and

the results pooled by averaging. Thus, phenotypic distances

for two data sets were available for comparison, the raw

phenotype data (P1) and a set where the missing values

have been replaced in this way (P2).

The effect of missing data, rare alleles and uneven dis-

tributions of markers across the genome within the geno-

type data were investigated by creating ten subsets of

genotypic data (Table 1). The first set represented all

available data (A). Two sets were created by excluding all

monomorphic loci and including all loci with no missing

data (B) or including all loci with 5 % or less missing data

(E). In order to investigate whether data sets comprising

loci with highly imbalanced allele frequencies (for example

allele frequencies = 0.9:0.1) offered different correlations

to data sets comprising loci with balanced allele frequen-

cies (for example allele frequencies = 0.6:0.4) we created

four further data sets. Two sets excluding loci with highly

imbalanced allele frequencies were partitioned from data

sets B and E by selecting only those loci where the minor

allele frequency was between 0.101 and 0.499 (Sets C and

F) and two sets including only loci with highly imbalanced

allele frequencies by selecting only those loci where the

minor allele frequency was 0.100 or less (Sets D and G).

The markers used in this study have been mapped across

the barley genome to 944 map positions over seven chro-

mosomes. The markers are not evenly distributed across

these map positions with 448 map positions represented by

a single marker and one map position, on chromosome 3

harbouring 38 SNP loci. The markers were sampled

repeatedly in 2000 replications. Where a map position was

represented by a single marker, that marker was always

selected. Where a map position was represented by more

than one marker, one marker was selected, at random, to

represent that map position. The selected makers (Set H)

were used to calculate distance matrices and these dis-

tances were correlated with the morphological distances.

An optimum set was selected by interrogating the data to

identify markers at each marker position that were fre-

quently associated with high correlations. The resulting set

of 944 markers (Data set I) were then used to calculate

distance matrices which were, in turn, correlated against

morphological distances. A final marker set was simply

chosen by randomly sampling a random number (con-

strained between 300 and 1400) of markers from within the

full set of marker data in 50,000 replications. The selected

makers (Set J) were used to calculate distance matrices and

these distances were correlated with the morphological

distances.

The relationships amongst the varieties selected inves-

tigated by researching their pedigrees. We abstracted

information from the technical questionnaires submitted

with each candidate variety identifying their parents. We

integrated this information with pedigree data from the

BBSRC Barley Pedigree Report (http://www.jic.ac.uk/

germplas/bbsrc_ce/Pedb.txt) and Abstammungskatalog der

Gerstensorten (http://www.lfl.bayern.de/ipz/gerste/09740/

gerstenstamm.php). Additional information was taken

from passport data held by germplasm collections includ-

ing the Genebank of IPK Gatersleben (http://gbis.ipk-

gatersleben.de/gbis_i/), the US Department of Agriculture’s

Agricultural Research Service Germplasm Resources

Information Network (http://www.ars-grin.gov/), and the

ECPGR Barley Database (http://barley.ipk-gatersleben.de/

ebdb/). The pedigree data were tabulated and interrogated

in Excel.
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As all varieties within this dataset have been granted

Plant Breeders’ Rights, they are distinct from each other,

making it impossible to assess DUS decisions at the normal

thresholds. In order to compare the decision making using

morphology or genotype data we set an arbitrary threshold

for phenotypic distances such that 10 % of the varieties (43

varieties) were ‘not distinct’ (non-D). This set of ‘non-D’

varieties was used as a benchmark for comparisons made

by setting thresholds for the genotypic data in an attempt to

reproduce the decisions made using the morphological

data. A series of threshold values were applied to the

genetic distance matrices that would generate a series of

‘non-D’ variety sets with 43, 100, 200, 250, 300, 350 and

400 members. The decision making using phenotypic or

genotypic data could be compared by simply counting the

number of varieties that were described as ‘non-D’ by both

methods.

Results and discussion

The correlations between phenotypic and genotypic dis-

tances are all positive. The correlations observed are

greater than 0.57 with the exception of values obtained for

genotype data sets D and G. Data sets D and G were

selected to investigate whether correlations improve if

genetic loci harbouring rare alleles were used to calculate

the genetic distances. The results in Table 2 clearly show

that this is not the case. It is possible that these low cor-

relations are a consequence of selecting few markers

(D = 369 markers, G = 708 markers). The correlations

follow a pattern when considering the phenotypic dis-

tances, such that correlations using r(Gower Distance) [
r(Manhattan Distance) [ r(Modified Manhattan Distance) (p \ 0.05).

The correlations follow a pattern when considering the

genotypic distances such that r(Manhattan Distances) [ r(Euclidean

Distances) (p \ 0.05).

Results from previous studies suggest that better corre-

lations between phenotypic and genotypic distances are

obtained when genetic distances are calculated using many

markers. The number of markers in this study is an order of

magnitude greater than the number of markers used in

previous studies. We investigated the effect of marker

numbers on the correlation between phenotypic distance

and genotypic distance by repeatedly selecting random sets

of genotypic markers. Correlations between the genotypic

distances and the phenotypic distances were calculated and

tabulated with the number of markers for each random

selection of markers. Scatter plots of calculated correla-

tions against number of markers used show a clear pattern:

initially, the correlations between the genotypic distances

and the phenotypic distances increase as the number of

markers used increases but as the number of markers

increases further, the correlation values plateau. Once the

correlation has reached a plateau, the scatter of correlations

around a central value reduces with increasing marker

numbers (Fig. 1). The low initial correlation values when

small numbers of markers are used offer an explanation for

the poor correlations observed in earlier studies. This result

suggests that it is possible to determine the minimum

number of markers needed to offer a reasonable prospect of

achieving optimum correlations between phenotypic and

genotypic distances. When the values obtained for corre-

lations calculated using data sets with low minor allele

frequencies (minor allele frequency\0.1, Set D and Set G)

are compared with the scatters shown in Fig. 1, it can be

seen that the calculated values are systematically lower

than the values that would be obtained by drawing an

equivalent numbers of markers at random.

The markers used in this study have been mapped across

the barley genome to 944 map positions over seven chro-

mosomes, but the markers are not evenly distributed across

these map positions. We maximised the sampling of

markers across the genome by selecting, at random, one

marker to represent each map position for 2000 replica-

tions. The selected makers were used to calculate distance

matrices and these distances were correlated with the

morphological distances. The mean and maximum of the

correlations obtained are shown in Table 2 and it may be

seen that the mean correlation obtained in this way was

comparable with correlations obtained for data sets A–C

and E–F and the maximum correlations obtained were, in

all cases, higher (p \ 0.05). When an ‘optimum’ marker

Fig. 1 Scatter plots of correlations between genotypic and pheno-

typic distances shows correlations improve as marker numbers

increase until a ceiling is reached
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set (I) was selected by interrogating the data to select

markers at each marker position that were frequently

associated with high correlations, the correlations obtained

were consistently higher than those obtained for data sets

A–C and E–F (p \ 0.05). Finally, a set of markers was

simply selected at random from within the full set of

marker data in 50,000 replications. At the first step of each

replication a random number was generated which would

determine the number of markers drawn at random from

the full set of marker data. The optimum correlations were

obtained for a marker set comprising 339 markers.

Using these approaches we have calculated correlations

between genotypic and phenotypic distance that exceed any

previously reported, demonstrating the strong positive corre-

lation between genotypic and phenotypic distance measures

which is fundamental to successfully implementing UPOV

Model 2. We have also shown that increasing marker numbers

initially improves the correlation between genotypic and

phenotypic distances but the rate of improvement in correla-

tion decreases towards zero once an optimum number of

markers have been used. This second conclusion is important

as a guide to future research policy by DUS authorities; pre-

viously it had been hoped that increasing the number of

markers would yield better correlations, but we have shown

that beyond an empirically discovered point, simply increas-

ing the number of markers will not improve results.

The genotypic distance calculations have given all markers

an equal weight. The 1991 Act of the UPOV Convention

defines a variety as a group of plants that can be ‘‘defined by the

expression of the characteristics resulting from a given geno-

type or combination of genotypes’’. We have used genomic

prediction to quantify the contribution of each marker within

the genotype data to each characteristic within the phenotypic

data on the assumption that expression of genotypes at all loci

will, to a greater or lesser extent, result in the expression of a

characteristic. Regression analysis in a ‘training set’ allows

quantification of the contribution of each and every marker to

expression of a characteristic, wherephenotype is the sumof an

effect contributed by each genetic locus

Phenotypei ¼
Xn

j¼1

mijgi

where Phenotypei is the predicted trait value for the ith line

(equally the ith genotype), mij is the marker score for the

jth marker for the ith line and is the regression coefficient

for the jth marker. Variation in the regression coefficients

(gj) would, in effect, give the markers differing weights in

the distance calculations. The results of this regression can

be used to predict the expression of that characteristic in a

‘test set’ of varieties where genotypic data are available but

phenotypic data are not. The coefficients of the quantitative

contribution of each genetic locus may be applied

subsequently to genetic variation at each locus in the test

set to predict the expression of the characteristic for each

member of the test set. The process was repeated for each

characteristic that makes up the phenotypic data. Genomic

prediction was implemented using linear regression.

Logistic regression offered no improvement in correlations

between predicted and measured phenotypes for those

‘binary’ characteristics within the morphological datasets.

Initially, we tested genomic prediction for each phenotypic

characteristic with tenfold cross-validation. On each of ten

occasions the variety set was divided into a training set

(90 %) and a test set (10 %) of accessions and the

Table 3 Correlations between predicted and measured characteris-

tics achieved using genomic prediction

UPOV

no.

Characteristic Correlation

(predicted vs.

measured

characteristics)

1 Plant: growth habit 0.661

2 Lowest leaves: hairiness of leaf sheaths 0.925

3 Flag leaf: intensity of anthocyanin

coloration of auricles

0.459

5 Plant: frequency of plants with recurved

flag leaves

0.250

6 Flag leaf: glaucosity of sheath 0.227

7 Time of ear emergence 0.295

9 Awns: intensity of anthocyanin coloration

of tips

0.445

10 Ear: glaucosity 0.504

11 Ear: attitude 0.274

12 Plant: length 0.288

13 Ear: number of rows 0.954

14 Ear: shape 0.140

15 Ear: density 0.293

16 Ear: length 0.285

17 Awn: length 0.393

18 Rachis: length of first segment 0.329

19 Rachis: curvature of first segment 0.343

20 Sterile spikelet: attitude 0.682

21 Median spikelet: length of glume and its

awn relative to grain

0.256

22 Grain: rachilla hair type 0.572

23 Grain: husk 0.201

24 Grain: anthocyanin coloration of nerves

of lemma

0.698

25 Grain: spiculation of inner lateral nerves

of dorsal side of lemma

0.773

26 Grain: hairiness of ventral furrow 0.746

27 Grain: disposition of lodicules 0.554

28 Kernel: colour of aleuron layer 0.764

29 Seasonal type 0.975

– Ear: development of sterile spikelets 0.738
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predicted phenotype correlated with the actual phenotype

and the mean correlations tabulated (Table 3). The cor-

relations ranged between r = 0.140 and r = 0.975. The

UPOV convention states that characteristics must fulfil

certain criteria to be selected for use in the DUS exam-

ination. ‘‘Characteristics should be a) result of a given

genotype or combination of genotypes; ….’’ While we

cannot assume that we have selected markers close the

loci responsible for all of the characteristics in the mor-

phology data set, the extent of linkage disequilibrium

(LD) in elite barley suggests that many characteristics

should correlate with at least some members of this dense

set of markers. This makes it all the more surprising that

we have not obtained better results for genomic prediction

of individual characteristics and may open questions

regarding the heritability of the traits used in DUS testing.

When testing correlations between phenotypic distances

and phenotypic distances predicted from the genotypic

data, genomic prediction was implemented selecting the

training set and test sets in five different ways. In the first

four instances the ‘training set’ was selected on a char-

acteristic-by-characteristic basis and the ‘test set’ included

all varieties. First, the ‘training set’ was selected to include

all varieties with complete phenotype data (Dataset K). In

the remaining three cases, the ‘training set’ was selected

from among the varieties with complete phenotype data to

include approximately one half (L), one quarter (M) and

one-eighth (N) of the number of varieties in the complete

data set. In this way we represented a scenario where the

addition of candidate varieties, year on year, would

increase the number of lines in the ‘test set’ relative to the

number in the ‘training set’. However, the requirement to

calculate distances among all varieties, including both ‘test

set’ and ‘training set’ varieties, compromises the inde-

pendence of the ‘training set’ from the ‘test set’. In the fifth

instance the ‘training set’ to include only those varieties

where phenotype data were complete for all characteristics

(196 varieties) and the ‘test set’ selected to include only

those varieties where phenotype data was incomplete for

one or more characteristics (O). In all cases, Euclidean and

Manhattan distance matrices were calculated from the

predicted phenotype data calculated for each ‘test set’ and

these matrices were, in turn, correlated against the three

phenotypic distance matrices (Table 2).

The correlations for data sets generated using genomic

prediction (Sets K, L, M and N) are a clear improvement

(p \ 0.05) over any of the other correlations shown in

Table 2, suggesting that improved correlations have been

obtained by novel statistical approaches. However, the

‘training set’ is a subset of the ‘test set’ for each of these

data sets rather than being completely independent and the

correlations decrease as the ‘test set’ increases in number in

comparison with the ‘training set’. If this method were

implemented with the ‘training set’ and ‘test set’ com-

pletely independent, (Dataset V) the calculated correlations

are observed to be lower than the best among those shown

in Table 2.

The varieties within the study showed some surprising

degrees of relatedness; for example, the variety ‘Igri’ fea-

tures in the pedigree of 217 varieties, either as a parent,

grandparent, great grand parent or great-great grandparent.

We identified all possible full, half and quarter siblings and

those varieties related as parent–offspring or grandparent–

offspring; for example, 65 varieties were full siblings of at

least one other variety, organised into 28 families of

between two and four siblings in 47 pairs. The pair-wise

phenotypic and genotypic distance for all related pairs were

extracted, averaged and tabulated by relationship

(Table 4). The correlations between phenotypic and

genotypic distances and the correlations between kinship

and all distances suggest that UPOV Model 2 has potential

to succeed in the absence of ‘noisy’ data.

Having optimised the correlations between phenotypic

and genotypic distances we can consider the quality of

Table 4 Mean phenotypic or genotypic distances among sets of related varieties as shown by their kinship and correlations between distance

measures for varieties grouped by their kinship

Average distances Families Pairs Phenotypic distances Genotypic distances Kinship

Gower Manhattan Modified Manhattan Manhattan Euclidean

All varieties NA 92665 0.25 38.87 29.31 1567.7 39.3 0

Full siblings 28 67 0.16 25.67 16.74 639.7 24.5 0.50

Half siblings 126 2676 0.19 31.58 22.24 1025.2 31.7 0.25

Quarter siblings 179 11975 0.20 33.04 23.60 1106.0 33.0 0.125

Parent–offspring pairs 115 365 0.18 28.41 19.29 755.8 27.0 0.50

Grandparent–offspring pairs 67 327 0.19 30.76 21.79 1024.4 31.7 0.25

Correlation to genotypic distance Manhattan 0.98 0.99 1.00

Correlation to genotypic distance Euclidean 0.96 0.99 0.99

Correlation to kinship -0.89 -0.95 -0.95 -0.95 -0.97
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distinctness decisions made using morphological charac-

teristics or genotype data. We examine the hypothesis that

‘Varieties shown as ‘similar’ using phenotypic distances

will also be shown as ‘similar’ using genotypic distances’.

The ‘typical’ data shown in Fig. 2 illustrate the issues that

need to be resolved. Despite the positive correlation

between phenotypic and genotypic distances, there may be

ambiguity when comparing decisions made using mor-

phological and genotypic data.

As all varieties within this dataset have been granted

Plant Breeders’ Rights we arbitrarily declared 10 % of

varieties (43 varieties) as non-distinct using morphological

characteristics and used this set of ‘non-D’ varieties as a

bench mark for comparisons made by setting thresholds for

the genotypic data in an attempt to reproduce the decisions

made using the morphological data. The decision making

using phenotypic or genotypic data could be compared by

simply counting the number of varieties that were descri-

bed as ‘non-D’ by both methods. The ability to use geno-

type data to reproduce distinctness decisions made using

morphology is shown when 43 ‘non-D’ varieties are

identified using Gower’s Distance, Manhattan Distance or

Modified Manhattan Distance and compared with sets of

‘non-D’ varieties identified using genetic distances

(Table 5). When 43 ‘non-D’ varieties are identified using

genetic distances, fewer than half the varieties appear in

both the genotypic ‘non-D’ set and the morphology ‘non-

D’ set. This clearly shows that the same decision will not

be made using genetic distances or morphological dis-

tances. This is clearly a setback regarding implementation

of UPOV BMT Model 2 molecular methods as a direct

replacement for the current system should the success

criterion be that genotypic and morphological decisions

correspond exactly. The decisions made using genomic

prediction of morphology correspond most closely with

those made using measured characteristics but these results

remain unsatisfactory. The possibility of adopting a ‘super-

D’ approach was investigated by identifying further, larger

sets of varieties using the genotypic data. Here we sought

to determine what proportion of the variety set had to be

identified as ‘low-D’ varieties using the genotype data

before we could be confident that that we would not

include varieties that are ‘D’ by morphology among the

genotypic ‘super-D’ varieties. Once more, the results are

disappointing. Among the genotypic dataset tested, it is

possible to select 400 (out of 431) varieties as ‘low-D’ and

still include one variety that is ‘non-D’ by morphology

among the ‘super-D’ indentified by genotypic distances.

Conclusions

We have explored the interactions between morphological

and genetic distances in a set of 431 elite UK barley

varieties. We have used a set of high-density SNP genotype

data that broadly represents the whole barley genome. With

3072 loci, the marker set is an order of magnitude larger

than any data set used in an exploration of UPOV BMT

Model 2 previously reported. In all cases we demonstrated

a positive correlation between genotypic and phenotypic

distance measures for this set of varieties. When we

selected genotype data on the basis of simple criteria such

Fig. 2 Calibration of molecular against morphological distances

under UPOV BMT Model 2. The upper graph illustrates decision

making under a perfect correlation between molecular and morpho-

logical distances. The middle graph illustrates possible uncertainty

where the correlation between molecular and morphological distances

is sub optimal. The lower graph illustrates uncertainty seen within the

data used in this study
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as percentage missing data, the optimum correlations with

phenotypic distance measures were r = 0.58–0.66. Better

correlations were achieved by selecting the ‘best marker’ at

each mapped position across the genome (r = 0.65–0.72).

However, we demonstrated, by repeated sampling, that there

was a ceiling to the correlations achievable by simple calcu-

lation of genetic distance measures such that the addition of

additional markers is unlikely to offer a prospect of correla-

tions much above 0.70. This analysis would have to be tested

for each crop species considered and the ceiling is likely to

vary according to the extent of LD within each crop genome.

Genomic prediction was attempted to investigate the

possibility of breaking through this ceiling. The results

reported, at first sight, offer considerable encouragement,

achieving correlations of r = 0.86 (Gower’s Distance),

r = 0.84 (Manhattan Distance) and r = 0.84 (Modified

Manhattan Distance). This apparent success must be tem-

pered by the lower results calculated when the ‘training set’

and ‘test set’ were truly independent. It is also notable that,

when considered on a characteristic by characteristic basis

there was considerable variation in the correlations

between predicted and measured characteristics. This

suggests there is considerable variation in the heritability of

the characteristics and hence considerable variability on the

quality of information when the characteristics are used in

distinctness testing under the current system. Genomic

prediction using methods such as ridge regression are rel-

atively new and there are few published software packages

available. There is considerable active research in this area

with an expectation that novel methods are being developed

and implemented in new software (Heslot et al. 2012).

When varieties were grouped according to their pedigree

relationships, a strong correlation was observed between a

coefficient of relatedness and genetic or morphological

distances, offering support for both or either type of data as

suitable for use in resolution of issues regarding EDV.

The essence of UPOV BMT Model 2 requires calibra-

tion of genetic distance measures to reproduce the deci-

sions made using morphological distances. We have

demonstrated that a one-to-one correspondence of dis-

tinctness decisions is not possible even at the high levels of

correlation between genetic and morphological distances

achieved in this study. This result raises a question. What

level of correspondence between distinctness decisions

made using genetic and morphological distances would be

required before UPOV BMT Model 2 could be imple-

mented? This cannot be answered by simply addressing

technical issues but is a question that can only be addressed

by the plant breeders and DUS testing authorities. Any

result other than a one-to-one correspondence of decisions

results in risk to plant breeders where the quality of

existing protection by Plant Breeders’ rights is diminished

if a novel genetic threshold is set at too low a level or the

‘distinctness’ needed to acquire protection of a new variety

is unreasonably diminished if a novel genetic threshold is

set at too high a level.

Table 5 Comparisons of Distinctness decisions made using either morphological or genotypic distances

Number of genotypic ‘non-D’ varieties

43 100 200 250 300 350 400

Gower: 43 ‘non-D’ varieties

A Full data set 26 56 91 100 100 100 100

B No missing data 28 67 95 98 100 100 100

E 5 % missing data 30 58 93 100 100 100 100

I Optimised mapped markers 33 60 95 98 100 100 100

K Genomic prediction Training set: all varieties 47 81 95 100 100 100 100

Manhattan: 43 ‘non-D’ varieties

A Full data set 23 44 79 91 95 98 98

B No missing data 21 47 81 93 95 95 98

E 5 % missing data 23 44 81 95 95 95 98

I Optimised mapped markers 26 47 86 91 95 95 100

K Genomic prediction Training set: all varieties 35 72 86 93 93 100 100

Modified Manhattan: 43 ‘non-D’ varieties

A Full data set 23 47 77 93 93 98 100

B No missing data 19 44 79 91 93 95 98

E 5 % missing data 23 44 79 93 93 95 100

I Optimised mapped markers 23 47 86 93 95 95 98

K Genomic prediction Training set: all varieties 49 79 86 95 100 100 100

The percentage concordance between methods is shown
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If these issues cannot be resolved, it is likely that the

rapidly reducing costs of high-throughput DNA sequencing

will make UPOV Model 3 more attractive. Under this

model there would be complete replacement of the current

system by the use of molecular markers. Variety registra-

tion could be completed in a matter of weeks or months

with field inspections becoming a matter of historical

interest. There can be no fuller description of a variety than

its entire DNA sequence. However, the ability to describe a

variety based on its DNA sequence may pose as many

problems as it addresses: how should uniformity (U) be

treated given that polymorphisms exist between monozy-

gotic (identical) twins? How should stability (S) be

addressed when the probability of mutation at any base is

of the order on 10–8 per base per generation? Even if a

satisfactory outcome can be agreed, where would the

boundaries for minimum distance and essential derivation

be set for distinctness (D) testing?

Such a change would have impacts on other areas of

statutory testing such as seed certification. Currently seed

lots are certified by reference to their variety description;

thus the use of variety descriptions based wholly, or in part,

on molecular data in DUS testing would impose molecular

testing on seed certification authorities. There would be

clear advantages to this change: using the reference

sequence as the varietal description, seed lots could be

certified as pure and true to type by assaying samples of

seeds without the need for repeated field inspections and

the purity of hybrid seed lots with respect to the hybrid

formula could be put beyond doubt. This revised system

would require a review of the sampling techniques used in

seed certification. A revised system may place small-scale

seed producers at a disadvantage and it could discourage

seed production in nations without an infrastructure of

sophisticated laboratory facilities.

A radical revision of PVP to utilise the data production

potential of ‘next generation sequencing’ is almost inevi-

table. There should be urgency in the discussions to rede-

fine ‘varieties’ with reference to the available data types

and a managed transition to a new system that can be

implemented in all nations, regardless of their economic

status.
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